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An exact solution is obtained for the survival fraction in the one-dimensional 
diffusion problem with randomly distributed deep traps. The time decay is 
studied both with and without a bias field. The small concentration (x) long 
time (t) decay behaves as exp[-(x2t/to)J/3]. The exact results are compared 
with the coherent potential approximation (CPA) and the first passage time 
approach (FPT). We find that in most cases of practical interest the FPT is 
superior to the CPA. 
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1. I N T R O D U C T I O N  

Diffusion and trapping of excitations or carriers in one-dimensional sys- 
tems is a problem of current experimental and theoretical interest. (~'2) In 
this paper we present the exact solution of the one-dimensional deep trap 
problem using a simple scattering theory analogy. Applications range from 
exciton trapping, to nuclear spin diffusion and relaxation in one- 
dimensional-l ike systems, superionic conductors ,  (3) and polymeric  
chains. (4) The present results also provide a useful test of well known 
approximation methods such as the average t matrix (ATA), (5) coherent 
potential approximation (CPA), <6'7) and the first passage time approach 
(FPT) of Montroll. (8) The relative merit and validity of these approaches 
has recently been a subject of some controversy. O) Since the CPA is always 
better than the ATA we shall not consider the latter in this paper. In three 
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dimensions, CPA and FPT both predict the same (exponential) long time 
decay and time constant for the survival fraction n(t) in the presence of 
infinitely deep traps. This is not so in one-dimensional lattices. Here one 
also has to distinguish between the low and the high trap concentration 
regimes. Calling x the trap concentration, we find that when x < 10 -2 the 
long time decay can be summarized by writing n(t)~exp[-(x2t/ t~) ~] with 

= 1 (CPA), #- -  1/2 (FPT), and/~ = 1/3 for the exact result. Hence in 
one dimension neither approximation correctly reproduces the concentra- 
tion and time dependence of the survival fraction. We also find that in 
concentration ranges of experimental interest, the FPT is a better approxi- 
mation than the CPA. The CPA is superior only in the limit of very high 
trap concentration x >t I /2 .  This is because, unlike the FPT, the CPA 
becomes exact in the limit that x -~  1. However, like all "effective field" 
theories, the CPA becomes increasingly worse as the dimensionality of the 
system is lowered. The FPT on the other hand is only meaningful when the 
concentration of trapping sites is sufficiently small. 

The influence of an electric field and off-diagonal disorder is also 
discussed. The former is treated exactly and the latter is briefly discussed in 
the framework of the effective medium approximation3t~ The electric field 
changes the long time decay in the direction of an exponential law with 
increasing field strength. 

2. THE SCATTERING ANALOGY 

Diffusive transport in the presence of traps can be described using the 
master equation for the excitation density n~(t) at site i 

dni(t) 
dt  - w , j n i ( t )  + w j i , , A t )  -  i i(t) (1) 

J J 
where W,j is the hopping rate between the pair of sites i and j and 8 i is the 
trap rate taken here to be either infinite with probability x or zero with 
probability (1 - x); x therefore represents the concentration of traps in the 
system. We shall present exact results for n(t), the survival fraction of 
excitations at time t, and G-00(t), the probability of finding the excitation at 
the same site at time t. Both are the configurational averaged quantities. 

Two cases are considered: (a) W/j = Wji = W and (b) W+ = W(1 + 
~/), W = W ( 1 -  ~7); 7t represents the "bias" and is given by ~/= 
eEa/k~T. The quantities e, E, a refer to electronic charge, applied field, 
and lattice constant, respectively. It is assumed that W,j only connects 
nearest neighbors. 

The reason why the one-dimensional deep trap problem is exactly 
soluble can be simply understood. As soon as the initial site 0, the first trap 
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of the left at site l, and the first trap on the right at site m are specified, the 
remaining traps in the chain become irrelevant. We therefore have to solve 
a two-trap problem exactly and carry out the configurational average over 
all possible positions of m and l. The Laplace transform of the probability 
of finding the excitation at site n at time t given that it was initially created 
at site 0, Gon(m,l), is easily found using Eq. (2.3) of Ref. 6. Using 
elementary scattering theory we have 

Gol(m)6,Gin (m) 
G~ = G~ - 1 + 6,GH(m ) (2) 

and it follows immediately that for infinitely deep traps (6t ~ oo) 

G0mc, .~  (G0~G,.m - G0~Om,) (G , .C , .m  - G, m G , . . )  
Go~(rn, l ) = Gon Gmm Gmm(GllGmm - GlmGml ) 

(3) 

The "Green functions" Gkt on the right-hand side of (3) now refer to the 
trap-free system. It is easy to check that Gon(m,l) vanishes when n lies 
outside the region (m,l). For the one-dimensional ordered chain, the 
renormalized perturbation expansion {6) immediately gives us, for example, 

Gore = Goo(p)hm(p) (4) 

where G 0 0 = ( p + 2 g )  i, h ( p ) = g / ( g + p ) ,  and 2g= - p + ( p 2 +  
4 Wp) ~/2. The transform of the survival fraction at time t, n(p), is defined as 

n ( p ) :  ~ ~o~ ~ xZGo,(m,1)( I - x ) ' - 1 ( l - x )  [tl-1 (5) 
m = l  l = - 1  n = - o o  

where without loss of generality we have assumed that the initial site 0 is 
definitely not a trap. Substituting (3) in (5), using (4), particle conservation 
in the trap free system, and rearranging the summation we finally obtain 

x2( - 1)"h:"(1 - h): 
n ( / o )  

.=o ~-j p [ 1 - ( 1 - x ) h ~ ] 2 . [ l - ( 1 - x ) h " + l ]  2 (6) 

The survival fraction in the presence of an electric field can be 
evaluated using the same procedure. Here we find that 

x2(l H ) H  2~ 
1 - p - n ( p , n )  = .=o [ I - ( I -  ~).o] . [ i - ( i -  x)H"+'] 

x 1 - (1 - x ) ~ r " h _  + 1 - (1 - - ) ) H " h +  (7)  
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where H = h+ h_, h+ (p,~l) = h_ (p, -~) ,  and 

(?2 + 4?W+ 4"q2H/2) 1/2 + 2~ )W-p  
= (8) 

h+(p,~) (p2 +4pW+4~2W2)~/2+ 2~IW+p 

The infinite series (6) and (7) converge rapidly and are simple to compute. 
The exact solution will now be compared to the CPA and the FPT. From 
Eq. (4.1) of Ref. 6 we obtain for the CPA 

ncpA(P, 7) = 1 + x 
p2 + 2x2W + x[4W2x 2 + p2 +4pW + 4712WZ(1- xZ)] '/2 

(9) 

The zero-field limit is obtained by putting ~/= 0 in (9). The CPA expression 
shows that the bias will modify the long time behavior of n(t) and this only 
when ~ 1> x / ( l  - X2) 1/2. In the small concentration limit this conclusion 
can be obtained from a direct physical argument (1) and as we shall see 
remains valid for the exact result as well. The asymptotic behavior of 
nCPA(t ) is exponential and of the form ~exp( -211  - (1 - xZ) I/2] Wt}. 

In one dimension the survival fraction in the FPT is given by (8) 

nrpT(t ) = n(0)exp{-xfold~ 2Wexp( -2WT) .  [ I0(2W,)+/I(2W~')]  } 

(10) 
where Io, I t are the modified Bessel functions. The quantity in the ex- 
ponent is the number of new sites visited in a time t multiplied by the 
concentration of traps. The asymptotic behavior of (10) is given by 
exp[-2x(4Wt/~r)l/Z]. Approximating n(t) for all times with 

nvvr(t ) = exp[-Zx(4Wt/~r)  '/z] (11) 

we find for the Laplace transform of (11) the expression 

nVpT(p) = p - '  -- (~r/4) ~/2- ap-3/2exp(a2/4?) �9 erfc(a/2? '/2) (12) 

with a = 4x(W/~r) 1/2. An analysis of the exact and approximate results is 
presented in the next section. 

. ANALYTICAL BEHAVIOR OF THE SURVIVAL FRACTION n(t) 
AND ITS TRANSFORM n(p) 

Recalling that in the bias free case 

x 2 ( -  1)"h2-( l  - h)  2 

? [ 1 - ( 1 -  (1 - x)h"+'] 
(13) 
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with h(p) 

it follows easily that  

( p 2  + 4Wp)l/2 _ p  
--- (14) 

h(p) (p; +4Wp)t/z+ p 

n(p = O) = 1/2x2W 
(15) 

The  infinite series (13) is simple to compute  for all p.  This is illustrated in 
Fig. 1 where n(p) is c o m p a r e d  to the C P A  and  Eq. (12) for x = 10 -3. F r o m  
Fig. 1 we can immedia te ly  infer that  the F P T  mus t  be a bet ter  approx ima-  
tion than the C P A  for  this par t icular  concentrat ion.  We  shall now show 
that  this generally holds for x ~< 10 -2. 

Since we are interested in the survival fract ion n(t) and  (13) cannot  be  
analyt ical ly Laplace  inverted,  we look for a good approx imat ion  n,,(p) for  

10 5 

10 4 . 

10 3 - -  

n (p ' )  

p' 

i0-8 10-6 10-4 

Fig. 1. n(p') is plotted against p' =p/W [Full curve: exact result; dotted curve: Eq. (12); 
dashed curve: CPA], x = 10 3 
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10-1. 
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i0 -7 
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n(p') 

x = l O  -2 

' ' '1'0 -10 . . . .  I0 s . . . .  i . . . .  10 5 . . . .  101~ 

Fig, 2. 

p, 

The relative error [ n ( p ' ) -  G(p')]/n(p') is plotted against p'  = p / W  for x = 10 -2, 
10 3, 10-4, and 10 -s .  

the infinite series (13). First we carry out an expansion for small values of p 
and we obtain with h ~ l  - (p /W)  1/2 

y__22 . ~ ( - 1 ) "  (16) 
no(p) = p n=0 (n + y)2(n + 1 + y)2 

where y is defined by y = x(W/p) 1/2. This infinite series (16) is exact for 
p = 0 and obviously also exact in the p ~ oo limit, This results because for 
large values of p the first term n = 0 dominates the series n(p) and n~(p), 
and these terms are identical. To illustrate that no(p) is an excellent 
approximation for n(p) for all values of p we have plotted in Fig. 2 the 
relative error [n(p) - %(p)]/n(p) as a function of p. The maximum error 
with arises for all values o fp  is just of the order of the trap concentration x. 
The function no(p) is therefore effectively an exact representation of n(p) 
as long as x ~< 10 -2. 

The infinite series %(p) (16) can be rewritten in an integral representa- 
tion 

n~ (p)  = p - I  _ 2Y___~ 2 " ( ~  dX tanh(X/2)exp(-y~.)  (17) 
P d0 

which is easier to handle than the infinite series. Writing tanh X/2 = 1 - 
2/[1 + exp(X)], expanding exp(-Xy)  in a power series and then inverting 
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term by term we obtain a power series for n( t )  which is convergent for all 
values of t: 

n ( t )  4 ~ (-1)"~'(n 1)(1 22-,,) ix  ( 1/2 ~ , . . . .  wo ] 1(.12). (18) 
n=O 

Here (n/2)! is defined by the gamma function (n/2)!--- F(n/2  + 1) and • is 
Riemann's zeta function, given for example by the relation 

~ ' (n-  1 ) (1 -22-" )  = l / (n -2 ) ! ' f0~176  1 ] - '  (19) 

Considering the first three terms of the power series (18) 

n(t) = 1 - 4x(Wt /Tr ) ' /2+  ~r/4" ln2 [4x(Wt /~r ) ' /2 ]  2+ _ ' ' '  (20) 

we see that this expression is for short times identical to the asymptotic 
form (I 1) of the FPT result. In Fig. 3 we observe that n( t )  obtained from 

i0 -1- 

10-2. 

10-3. 

.n(t') 

0 2 4 6 .8 10 

4x(f /rO vz 

1'2 = 

Fig. 3. lnn( t ' )  is plotted against 4x(t'/~r) 1/2 with t' = tW. Full curve: power series Eq. (20); 
dotted curve: asymptotic form Eq. (24); thin curve: exp[-4x(t'/~)V2]. The symbols represent 
the numerical inversion of the exact result Eq. (13) [ + :  x = 10 -2, D: 10 -3, �9 10-4]. 
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the power series (20) is in excellent agreement with the numerical inversion 
of the exact n(p) (13) for trap concentrations x ~< 10 -2. 

To obtain the asymptotic long time decay behavior of n(t) we go back 
to Eq. (17), and change the variables Xy = s. The expression can then be 
inverted directly to yield 

n(t)= l-4X2fotdu foe~dsexp(-s)/s.~)2(Olu.4x2/s2 ) (21) 

where ~2  is the second elliptic theta function represented by the following 
series: 

OffOIz ) = 2" ~ exp[-vr2z(n + 1/2) 2] (22) 
n=0  

Inserting this expansion in Eq. (21) and carrying out the u integration we 
obtain 

oo 
2 1 .fomd.vyexp[_y_4vr2x2Wt(n+ i/2)2/.v2 ] n ( 0  = (n + 1 / 2 )  2 

(23) 

and by steepest descent the leading term (n = 0) becomes 

n(t--->m)~8(4x2Wt/3~r)t/2, exp[-3(~r2xZWt/4) 1/3 ] (24) 

The true asymptotic long time behavior of the one-dimensional deep 
trap problem behaves in the region of physical interest therefore as 
exp[-(x2t/to) 1/3] in contrast to CPA and FPT. This is illustrated in Fig. 3, 
where the exact n(t) is compared with the asymptotic form (24) in the 
regime x < 10 -2. Figure 3 also illustrates the concentration scaling prop- 
erty implicit in (23) and (24). 

4. HIGH TRAP CONCENTRATION ( x )  10 -2) 

The analytic approximation becomes increasingly worse with increas- 
ing x. A corresponding one can presumably be developed for x close to 1 
but we shall not pursue this in the present paper. In the regime x >/ 10 -2  we 
have studied the time decay numerically for x = 0.1 and 0.6 and for 
comparison x = 10 -2. Figures 4a-4c show that in this concentration range 
the CPA tends to become a better approximation than the FPT but only 
when x ) 1/2. This is simply because the CPA becomes exact when x ~ 1 
whereas the FPT which relies on the concept of the average number of new 
sites visited in the trap-free system becomes meaningless in the limit of very 
high trap concentration. 
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The effect of a bias field is illustrated in Fig. 5. The field leads as 
expected to a faster decay in the long time regime when 7//> x; this 
corresponds to a critical field E c = xk B T~ ea. In general in n (t, 77) cc - t ~'(n), 
where/~(~/)~ 1 as ~/~ 1. The critical field is several orders of magnitude 
higher in two- or three-dimensional systems. (1) The analytic treatment of 
the field-dependent case is more difficult and will be considered in a future 
paper. 

5. THE PROBABILITY OF REMAINING ON THE SAME SITE Goo(t ) 

Let us now consider the quantity Goo(p) which denotes the Laplace 
transform of the configurational averaged G'00(t) or probability of finding 
the excitation on the same site at time t. This quantity is of interest in for 
example fluorescence line narrowing experiments (1~) and N M R  relax- 
ation. (4) By definition 

Goo(/7) = Z E x2( 1 - x ) m - l (  1 - x)lZJ-~Goo(m,l) (25) 
m = l / = - I  

Using (3) and (4) this can be rewritten as 

hZ)2h 4n 
Zoo(P) = x2Goo(P) 

(1 I 

,=o [ 1 - ( 1 - x ) h 2 " ] 2 . [ 1 - ( 1 - x ) h 2 " + 2 ]  z (26) 

with Goo(P = 0) evaluated to be (2 + x)/6 Wx. In the CPA we obtain 

 o pA(e) = 1 + x 
xp + 2 Wx + (p2 + 4pW + 4xZW2) 1/2 (27) 

We again make the expansion for small values of p using (26) and obtain 

(28)  
n=0 (n + y)2(n + 1 + y)2 

but now with y = x (W/2p)  1/2. This infinite series approximates the exact 
p = 0 value (2 + x)/6 Wx by 2 /6  Wx and is obviously exact in the p ~ 
limit for the same reason as for n(p). Again we find that G~0(P) is an 
almost exact representation of G00(P ) as Iong as x < 10 -2. The relative 
error [Go0(P) - G~o(P)]/Goo(P)is for all values of p less than half the trap 
concentration x. The infinite series G~o(p ) (28) can be rewritten in an 
integral representation 

G~o(p) = G o o ( P ) " / 7 - 1 / 2 " [ - y +  fo ~176 ds coth( + ) e x p ( - s ) ]  (29) 
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1. I n(t') 

0 . 5 - ~  
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Fig. 4. lnn(t ')  is plotted against t' = t W  for (a) x = 0.01, (b) x = 0.1, and (c) x = 0.6. [Solid 
curve: exact result; thin curve: FPT Eq. (10); dashed curve: CPA.] 
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Fig. 5. In n(t') is p lo t ted  aga ins t  Y = t W  for ~l = x = 0.01 (solid curve) a n d  ~ = 0 ( thin curve). 
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i0-~ 

10"3. 

10 "~- 

10"s 
0 

t I 

10 ~ 2.104 3-10 4 4.10 4 

L Goo(t } 

Fig. 6. Goo(t')  is plotted against t' = t W  for x = 0.01. [Solid curve: exact result; thin curve: 
CPA; dotted curve: asymptotic form Eq, (32).[ 

which can immediately be inverted if we use the small p form Goo(P)/ 
p l/2,.~ 1 / 2p W l/~, to yield 

x fo ~ ds 193(01 Wtx2/s2) �9 exp ( -  s) (30) + 3  
Using for the third elliptic theta function 03 the following expansion: 

03(01 z) - 1 + 2 ~ exp( - ~r2zn 2) (3 l) 
n = l  

we obtain for the leading term n = 1 with the method of steepest descent 

8oo(t)--x(27r/3)~/2(2qrZx2Wt)~/6exp[-3(~2x2Wt/4) '/3] (32) 

the long time behavior for the configurationat averaged Z00(t). The exact 
C0o(t) is compared to the CPAand the asymptotic form (32) in Fig, 6. 

6. DISCUSSION 

We have presented exact results for the survival fraction n(t) and the 
same site probability function G-oo(t) in a one-dimensional ordered system 
with randomly distributed deep traps. Neither FPT nor CPA predict the 
correct form of the time and concentration dependence. The influence of 
fluctuations in one dimensions makes any approximations dangerous al- 
though we have shown that the FPT is clearly superior to the CPA in this 
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case. An important extension to treat disordered systems would be to 
consider the one-dimensional chain with disorder in the hopping rates W~j. 
In the bond percolation limit, the diffusion problem has been solved 
exactly by Odagaki and Lax. (2) In the general case of physical interest one 
has to rely on approximation methods. Odagaki and Lax also discussed the 
relative merit of approximation methods such as the "effective medium 
approximation, ''(w) continuous time random walk, (12) and CPA. (~) It 
should be straightforward to include the schemes in the present solution of 
the trapping problem, because Eqs. (3) and (5) are valid in general. 
Treating the disorder in the effective medium approximation is, for exam- 
ple, equivalent to replacing the quantity h(p) in (6) with (g) / (p  + (g)) 
where ( g )  is given by 

(g) = f  dWo(W)[1 /W+ I/(p + ( g ) ) ] - '  (33) 

Once (,,g(p)) is known one can evaluate n(t) using (6). Here 9(W) is the 
distribution of hopping rates. In the p ~ 0  limit we have D(0 )=  
a2(l / W) -1 for the diffusion coefficient and n(p = O) = ~1/ W)/2x 2 for 
the survival fraction. 
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